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Abstract

In the direct boundary element method (BEM) formulation of anisotropic thermoelasticity, thermal loads manifest

themselves as additional volume integral terms in the boundary integral equation (BIE). Conventionally, this requires

internal cell discretisation throughout the whole domain. In this paper, the multiple reciprocity method in BEM

analysis is employed to treat the general 2D thermoelasticity problem when the thermal loading is due to an internal

non-uniform volume heat source. By successively performing the ‘‘volume-to-surface’’ integral transformation, the

general formulation of the associated BIE for the problem is derived. The successful implementation of such a scheme is

illustrated by three numerical examples.
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1. Introduction

Materials with anisotropic properties are increasingly being used in engineering applications and much

attention has been paid to the stress analysis of such materials. In a number of thermoelasticity problems in

engineering, internal volume heat sources with non-uniform heat generation rates may be present in the

anisotropic media due to, for example, internal chemical reactions or electrical heating. Although some
analytical solutions have been obtained for a few specific problems (see e.g., Sherief and Magahed, 1999;

Dhaliwal and Sherief, 1980), recourse to numerical methods is generally necessary for most problems in

practice.

Among the general numerical methods for engineering analysis, the boundary element method (BEM)

has been recognized as an efficient computational tool. This is due to its distinctive feature of requiring only

the numerical discretisation of the boundary of the solution domain. In the direct BEM formulation for
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elastostatics, however, body-force and thermal elastic effects are well known to manifest themselves as

additional volume integral terms. The direct means of treating these integrals will require internal cell

discretisation throughout the whole domain. Such a direct evaluation by volume discretisation would,

however, destroy the notion of BEM as the boundary solution technique. Several schemes have been
proposed over the years to resolve this ‘‘volume integral problem’’ in the BEM analysis of isotropic, elastic

bodies when inertia and thermal effects are considered. The simplest way of computing the domain integral

is by subdividing the region into a series of internal cells, on each of which the Gauss quadrature scheme is

applied. Alternatively, Gipson and Camp (1985) and Camp and Gipson (1992) employed an integration

scheme based on the Monte Carlo method whereby a system of random integration points rather than a

regular integration grid is used. Another way to avoid computing the domain integral is to apply particular

solutions (see, e.g., Lachat, 1975; Deb and Banerjee, 1990) by changing the variables in such a manner that

the domain integral disappears from the boundary integral equation (BIE). The dual reciprocity method,
proposed by Nardini and Brebbia (1982), has also been widely applied to deal with volume integrals.

Perhaps the most analytically elegant approach is the exact transformation method (ETM) (see, e.g., Rizzo

and Shippy, 1977; Tan, 1983; and Danson, 1983), sometimes referred to as the Galerkin vector approach, in

which the ‘‘volume integral’’ is transformed exactly into a series of boundary ones. Generalizing the

Galerkin vector approach with a set of higher-order fundamental solutions, the multiple reciprocity method

(MRM) was introduced by Nowak (1989) for the transient heat conduction problem and later extended to a

series of other applications by Nowak and Brebbia (1989). Among the schemes mentioned above, the ETM

and MRM are fundamentally most appealing because they restore the BEM analysis as a purely boundary
solution technique yet without requiring further numerical approximations.

Although the ETM has been widely employed to treat the volume integrals associated with body-force

and thermal effects in isotropic elasticity, similar transformations for anisotropic elasticity have not been

successfully achieved until very recently. The works of Zhang et al. (1996a,b, 1997) were the first reported

successful attempts to consider the inertia effect. The effect of a temperature change in the elastic body can,

in essence, be treated as an effective body-force over the solution domain in Navier�s equations of equi-

librium. Notwithstanding this, the extension of the ETM to handle these effects in an anisotropic medium is

not as straightforward as in isotropic elasticity. This is because, unlike the potential function for body-
force, the distribution of a temperature change in an anisotropic body, in the general case, does not satisfy

the standard Poisson�s equation. The difficulties arising from this were not overcome until very recently

when Shiah and Tan (1999a) transformed the ‘‘volume integral’’, in the analytically exact sense, into a series

of boundary ones. By removing the singularity at the source point for interior stress calculations, Shiah and

Tan (1999b) also derived the Somigliana�s identity of the interior strain for 2D anisotropic thermoelasticity.

Although the particular integral approach has been employed by Deb et al. (1991) to treat 2D anisotropic

thermoelasticity, the technique involves sub-dividing a domain into ‘‘volume cells’’. In each of these cells,

the temperature field is approximated by a suitable polynomial function through a multiple regression
analysis. In order to obtain satisfactory results, the particular integrals need to be judiciously chosen.

In this article, the MRM is applied to treat 2D anisotropic thermoelasticity under steady state conditions

when the volume heat source is within the domain. The recurrence formulae employing a set of higher-

order anisotropic fundamental solutions are derived to treat the volume integral arising from the thermal

loading of an internal arbitrary volume heat source in the anisotropic medium. The heat generation rate of

the volume heat source can be of any form of a continuous function. However, the formulations presented

would not be applicable to domains with the presence of discrete point heat sources. This is mainly due to

the singularity of temperature field near the heat sources that invalidates the analytical transformation for
the volume integral. To consider discrete point heat sources is outside the scope of the present study and

still remains at work in progress. In general, for a random distribution of heat generation rate, a continuous

function to represent the distribution needs to be chosen through the multiple regression analysis. This is

not within the scope of the present study. By applying the principal of MRM, the process to successively
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convert the volume integral associated with the thermal loading follows the same vein as the procedures

described in the work by Shiah and Tan (1999a). This scheme has been successfully implemented into BEM

codes based on the quadratic isoparametric element formulation used in 2D anisotropic thermoelasticity. A

brief review of the procedure to treat the associated 2D anisotropic field problem in BEM is presented next.
This is followed by the formulation of the exact transformation process using the MRM. The successful

implementation of the proposed scheme is then illustrated by three numerical examples.
2. 2D anisotropic heat conduction

As a pre-process to deal with the problem of coupled anisotropic thermoelasticity, the corresponding

anisotropic heat conduction problem must first be solved to determine the distribution of the temperature

and its spatial gradients. With an internal volume heat source, the governing partial differential equation

for the 2D anisotropic heat conduction problem may be expressed as
KijH;ij þHðx; yÞ ¼ 0 ð1Þ
where H represents a temperature change, the function Hðx; yÞ denotes the known function for the dis-

tribution of internal heat generation rate; Kij are the thermal conductivity coefficients which, from thermo-

dynamic principals and Onsagar�s reciprocity relation, have the following relationships,
K11 > 0; K22 > 0; K11K22 � K2
12 > 0; K12 ¼ K21 ð2Þ
In the case of orthotropy, where the cross-derivative term in Eq. (1) is absent, the analysis can be con-

siderably simplified. As a result, the conventional way to numerically treat the fully anisotropic problem has

been to determine the principal axes by rotation of the original Cartesian coordinates so that this term

disappears. By employing the method of characteristics to transform the governing equation into the

standard Laplace�s form, Shiah and Tan (1997) successfully solved the anisotropic heat conduction problem
using the isotropic boundary integral equation. The linear transformation between both coordinate systems

may be generally expressed as
½ x̂x1 x̂x2 �T ¼ ½F ðKijÞ�½ x1 x2 �T; ½ x1 x2 �T ¼ ½F �1ðKijÞ�½ x̂x1 x̂x2 �T ð3Þ
where ½F ðKijÞ� (or ½F �1ðKijÞ�), the transformation (or the inverse transformation) matrix in terms of the

invariant coefficients, has its component element ½FmnðKijÞ� (or ½F �1
mn ðKijÞ�). The linear transformation allows

the analysis to be carried out using any standard BEM codes for the isotropic potential theory, albeit on a
distorted domain in the mapped plane. As is presented in detail by Shiah and Tan (1997), the mapping takes

the following form,
F ¼
ffiffiffiffi
D

p
=K11 0

�K12=K11 1

� �
; F�1 ¼ K11=

ffiffiffiffi
D

p
0

K12=
ffiffiffiffi
D

p
1

� �
; D ¼ K11K22 � K2

12 ð4Þ
Through the transformation described above, the anisotropic field involving an internal volume heat source

is now governed by
H;ii ¼ �H F �1
11 x̂x1

�
þ F �1

12 x̂x2; F �1
21 x̂x1 þ F �1

22 x̂x2
�
K11=D ¼ bHH1ðx̂x1; x̂x2Þ ð5Þ
which is the standard Poisson�s equation in the mapped plane. The associated anisotropic field problem

may now be solved by MRM (Nowak and Brebbia, 1989) in conjunction with the direct domain mapping
technique (Shiah and Tan, 1997).
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3. 2D anisotropic thermoelastic BIE

For a brief review of the basic boundary integral equation for 2D anisotropic thermoelasticity, consider

the direct formulation of the BEM for an anisotropic solid in two-dimensions, where the displacements, ui,
and the tractions, ti, on the boundary S of the domain X, are related by
CijuiðPÞ þ
Z
S
uiðQÞTijðP ;QÞdS ¼

Z
S
tiðQÞUijðP ;QÞdS þ

Z
X
XiðqÞUijðP ; qÞdX ð6Þ
in which Q and q represent the field points on S and in X, respectively, and P represents the source point on

S. In Eq. (6), Cij are the coefficients associated with boundary geometry at the source point P . Also in

Eq. (6), Xi represents the equivalent body-force term due to the temperature change in the domain, and
UijðP ; qÞ is the displacement fundamental solution, given by
UijðP ; qÞ ¼ 2Refri1Aj1 log z1 þ ri2Aj2 log z2g ð7Þ
Also, TijðP ;QÞ is the corresponding traction fundamental solution, which is well established in BEM lite-

rature (see e.g., Tan et al., 1992). In Eq. (7), rij and Aji are material constants, expressed by complex

quantities, Ref�g is the operator which takes the real part of these quantities, and zi is a generalized complex

variable defined in terms of the characteristic roots, li, and the difference of coordinates between the field

point Qðx1; x2Þ and the load or source point P ðxp1; xp2Þ as follows

zi ¼ ðx1 � xp1Þ þ liðx2 � xp2Þ ¼ f1 þ lif2 ð8Þ
In Eq. (8), fi represent the local coordinates which have the origin located at the source point. If the

temperature change of the elastic body isH, the equivalent body-force Xi can then be written as Xi ¼ �cijH;j

where cij are the coefficients given by cij ¼ cijklakl, cijkl being the material stiffness matrix and akl being the

coefficients of thermal expansion. Substituting this and the additional thermal traction term into Eq. (6),

the complete integral equation considering thermal effects can now be expressed as
CijuiðPÞ þ
Z
S
uiðQÞTijðP ;QÞdS ¼

Z
S
tiðQÞUijðP ;QÞdS þ

Z
S
ciknkHUijðP ;QÞdS �

Z
X
cikH;kUijðP ; qÞdX

ð9Þ

As can be seen, the last term on the right-hand-side of Eq. (9) is a volume integral arising from the thermal

loading. To restore the notion of the BEM as a computational boundary solution technique, the volume

integral (VI) needs to be transformed into boundary ones.
4. Exact VI transformation by MRM

With the heat conduction equation now defined in the x̂xi-coordinate system and in the form of Eq. (5),

the volume integral transformation of the term due to the thermal loading in Eq. (9) can be performed

following the same procedures by Shiah and Tan (1999a). Only the main steps will be described here as the

details have been presented in this reference. Recall that the VI term is
VIj ¼ �
Z
X
cikH;kUij dX ð10Þ
By expressing H;k in the x̂xi-coordinate system using the chain rule, Eq. (10) may be rewritten as
VIj ¼ �
Z
X̂X
cikH;kUij dbXX ð11Þ
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where the invariant coefficients cij take the element of the matrix0 1

cik ¼

c11
�c11K12 þ c12K11ffiffiffiffi

D
p

c21
�c21K12 þ c22K11ffiffiffiffi

D
p

BB@ CCA ð12Þ
Applying Green�s first theorem to this integral results in
VIj ¼ �
Z
X̂X

ðcikUijHÞ;k
h

� ðcikUij;kHÞ
i
dbXX ¼ �

Z
ŜS
ðcikUijHÞnk dbSS þ

Z
X̂X
ðcikUij;kHÞdbXX ð13Þ
It is convenient now to introduce a new function Qijk such that
Qijk;tt ¼ Uij;k ð14Þ
Recall Green�s second identity,
Z
X̂X
ð/r2u� ur2/ÞdbXX ¼

Z
ŜS
ð/ru� ur/Þ � n̂ndbSS ð15Þ
where n̂n denotes the unit outward normal at the boundary bSS . By substitutingH for / and ðcikQijkÞ for u, this
identity can be rewritten as
Z

X̂X
ðcikQijk;ttH� cikQijkH;ttÞdbXX ¼

Z
ŜS
ðcikQijk;tH� cikQijkH;tÞnt dbSS ð16Þ
Substituting Eq. (5) into Eq. (16) results in
Z
X̂X
ðcikQijk;ttHÞdbXX ¼

Z
ŜS
ðcikQijk;tH� cikQijkH;tÞnt dbSS þ

Z
X̂X
ðV ð0Þ

j
bHH1ÞdbXX ð17Þ
where V ð0Þ
j is used, for brevity, to represent the term cikQijk, and bHH1 is the heat source function satisfying the

associated heat conduction equation. To facilitate the volume integral transformation, a new function V ð1Þ
j

is introduced such that it satisfies
r2V ð1Þ
j ¼ V ð0Þ

j ð18Þ
Substituting V ð1Þ
j for u, and bHH1 for /, Green�s identity, Eq. (15), can be rewritten as
Z

X̂X

bHH1r2V ð1Þ
j dbXX ¼

Z
ŜS

bHH1V
ð1Þ
j;t

�
� V ð1Þ

j
bHH1;t

�
n̂nt dbSS þ

Z
X̂X
V ð1Þ
j
bHH2 dbXX ð19Þ
where bHH2 stands for
bHH2 ¼ bHH1;tt ð20Þ
In a similar manner, the transformation process may be successively performed to yield an infinite series as

follows,
Z
X̂X

bHH1V
ð0Þ
j dbXX ¼

X1
m¼1

Z
ŜS

bHHmV
ðmÞ
j;t

�
� V ðmÞ

j
bHHm;t

�
n̂nt dbSS ð21Þ
where bHHm is to denote the function taking (m� 1) times of Laplace�s operation upon the heat source
function bHH1 in the mapped plane; V ðmÞ

j is defined to satisfy the following recursive relation,
r2V ðmÞ
j ¼ V ðm�1Þ

j ð22Þ
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Therefore, from Eqs. (17) and (21), one may rewrite Eq. (13) in a form of boundary integrals as follows,
VIj ¼ �
Z
ŜS
ðcikUijHÞnk dbSS þ

Z
ŜS
ðcikQijk;tH� cikQijkH;tÞnt dbSS þ

X1
m¼1

Z
ŜS

bHHmV
ðmÞ
j;t

�
� V ðmÞ

j
bHHm;t

�
n̂nt dbSS ð23Þ
For evaluating the boundary integrals in the infinite series, the task remains to determine the general ex-

plicit form of V ðmÞ
j as well as V ðmÞ

j;t in a similar manner as was done by Shiah and Tan (1999a). For

this purpose, it is worth examining how the generalized complex variable zðlÞ may be expressed in terms of

the parameters in the x̂xi-coordinate system. The general form of Eq. (8) may be rewritten as
zi ¼ ljiðxj � xpjÞ ð24Þ
where lji represents elements of the matrix
lji ¼
1 1

l1 l2

� �
ð25Þ
By expressing the generalized complex variable in the x̂xi-coordinate system, Eq. (24) may be rewritten as
zi ¼ ljiðx̂xj � x̂xpjÞ ð26Þ
where, using Eqs. (3) and (4), it can be easily shown that lji is given by
lji ¼
K11 þ l1K12ffiffiffiffi

D
p K11 þ l2K12ffiffiffiffi

D
p

l1 l2

 !
ð27Þ
Differentiating Uij with respect to the field point Q in the x̂xi-coordinate system yields
Uij;k ¼ 2Refri1Aj1lk1=z1 þ ri2Aj2lk2=z2g ð28Þ
From Eqs. (14) and (28), the function Qijk is found to be
Qijk ¼ 2Re
ri1Aj1lk1z1 logðz1Þ

ðl2
11 þ l2

21Þ

(
þ
ri2Aj2lk2z2 logðz2Þ

ðl2
21 þ l2

22Þ

)
ð29Þ
From direct differentiation, its spatial derivative that appears in Eq. (23) can be readily determined to be
Qijk;t ¼ 2Re
ri1Aj1lk1lt1z1 logðz1Þ

ðl2
11 þ l2

21Þ

(
þ
ri2Aj2lk2lt2z2 logðz2Þ

ðl2
21 þ l2

22Þ

)
ð30Þ
From the definition V ð0Þ
j ¼ cikQijk, one may readily obtain
V ð0Þ
j ¼ 2cikRe

ri1Aj1lk1z1 logðz1Þ
ðl2

11 þ l2
21Þ

(
þ
ri2Aj2lk2z2 logðz2Þ

ðl2
21 þ l2

22Þ

)
ð31Þ
Eq. (18) implies that the explicit form of V ð1Þ
j is expressed as
V ð1Þ
j ¼ 2cikRe

ri1Aj1lk1

ðl2
11 þ l2

21Þ
F1z31 logðz1Þ
h(

þ F2z31
i
þ

ri2Aj2lk2

ðl2
21 þ l2

22Þ
F3z32 logðz2Þ
h

þ F4z32
i)

ð32Þ
where F1–F4 are invariant coefficients to be determined from Eq. (18). Following the same procedure as in

Zhang et al. (1996a,b, 1997) to determine the coefficients, one may obtain
F1 ¼
1

6ðl2
11 þ l2

21Þ
; F2 ¼

�5

36ðl2
11 þ l2

21Þ
; F3 ¼

1

6ðl2
12 þ l2

22Þ
; F4 ¼

�5

36ðl2
12 þ l2

22Þ
ð33Þ
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By repeating the same procedure successively to determine the fundamental solution of a higher-order form

for Vj, one may obtain the general form of Vj in the nth order as
V ðnÞ
j ¼ 2cikRe

ri1Aj1lk1

ðl2
11 þ l2

21Þ
nþ1

GðnÞ
1 z2nþ1

1 logðz1Þ
h(

þ GðnÞ
2 z2nþ1

1

i
þ

ri2Aj2lk2

ðl2
21 þ l2

22Þ
nþ1

GðnÞ
1 z2nþ1

2 logðz2Þ
h

þ GðnÞ
2 z2nþ1

2

i)
; ðn ¼ 0; 1; . . . ;1Þ ð34Þ
where the coefficients GðnÞ
1 and GðnÞ

2 are given by the following recurrence formulae,
Gðnþ1Þ
1 ¼ GðnÞ

1

4n2 þ 10nþ 6
; Gðnþ1Þ

2 ¼ GðnÞ
2

4n2 þ 10nþ 6
� GðnÞ

1 ð4nþ 5Þ
ð4n2 þ 10nþ 6Þ2

Gð0Þ
1 ¼ 1; Gð0Þ

2 ¼ 0;

ðn ¼ 0; 1; . . . ;1Þ ð35Þ
Differentiation of V ðnÞ
j yields
V ðnÞ
j;t ¼ 2cikRe

ri1Aj1lk1lt1

ðl2
11 þ l2

21Þ
nþ1

ð2n
h(

þ 1ÞGðnÞ
1 z2nþ1

1 logðz1Þ þ ðGðnÞ
1 þ 2nGðnÞ

2 þ GðnÞ
2 Þz2nþ1

1

i
þ

ri2Aj2lk2lt2

ðl2
21 þ l2

22Þ
nþ1

ð2n
h

þ 1ÞGðnÞ
1 z2nþ1

2 logðz2Þ þ ðGðnÞ
1 þ 2nGðnÞ

2 þ GðnÞ
2 Þz2nþ1

2

i)
ð36Þ
which appears in Eq. (23). In the presence of an internal arbitrary volume heat source, the complete
boundary integral equation for 2D anisotropic thermoelasticity can now be rewritten as
CijuiðP Þ þ
Z
S
uiðQÞTijðP ;QÞdS ¼

Z
S
tiðQÞUijðP ;QÞdSþ

Z
S
ciknkUijðP ;QÞHdS�

Z
ŜS
ciknkUijðP ;QÞHdbSS

þ
Z
ŜS

cikQijk;tðP ;QÞH
h

� cikQijkðP ;QÞH;t

i
ntdbSS þ

X1
m¼1

Z
ŜS

bHHmV
ðmÞ
j;t ðP ;QÞ

�
� V ðmÞ

j ðP ;QÞ bHHm;t

�
n̂ntdbSS ð37Þ
In Eq. (37), by incorporating the integral terms containing Qijk;t and Qijk into the infinite series, the above

equation can be further abbreviated into a simpler form,
CijuiðP Þ þ
Z
S
uiðQÞTijðP ;QÞdS ¼

Z
S
tiðQÞUijðP ;QÞdS þ

Z
S
ciknkUijðP ;QÞHdS �

Z
ŜS
ciknkUijðP ;QÞHdbSS

þ
X1
n¼0

Z
ŜS

bHHnV
ðnÞ
j;t ðP ;QÞ

�
� V ðnÞ

j ðP ;QÞ bHHn;t

�
n̂nt dbSS ð38Þ
in which bHH0 (when n ¼ 0) is defined by bHH0 ¼ H. To determine bHHj directly from its definition, one needs to

successively perform Laplace�s operation upon the heat source function bHH1, which should be explicitly

known for a specific distribution. Inspecting the recurrence formulae in Eq. (35), one may observe that the

factor (4n2 þ 10nþ 6) appears in the denominators of the coefficients and hence guarantees rapid con-

vergence of the infinite series. In general, the infinite series have been tested to converge to a finite value for

most heat source functions when n is set no more than 7. When the heat source function reveals strong
divergence for bHHn, properly re-scaling of the domain dimensions may be necessary to ensure rapid con-

vergence of the infinite series. For this re-scaling process, all nodal coordinates may be divided by the
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Fig. 1. A multiply connected domain.
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maximum length between any two arbitrary nodes such that bHHn is convergent for taking n� 1 times of

Laplace�s operations upon the heat source function. With all functions determined, solving Eq. (38) pre-

sents no serious difficulties since all integrands are at most weakly singular.

There remains one more issue that needs to be addressed in the general case, however. It concerns the
terms containing logðzÞ in the integrands, as it may not be analytic everywhere in the domain. This issue has

been explained in detail in Zhang et al. (1996b), and Shiah and Tan (1999a); thus, it will only be briefly

discussed here. If one defines the principal value of z as �p < argðzÞ6 p, the quantity logðzÞ is not analytic
along the negative f1-axis. This will invalidate the foregoing VI transformation. Although the problem may

be avoided by argument redefinition as proposed by Zhang et al. (1996b), it is not always possible to re-

define the range of argðzÞ to ensure the analyticity of logðzÞ everywhere in the domain. This is true for a

multiply connected domain. Take the region shown in Fig. 1, for example. If rays from any point along an

inner boundary are projected in arbitrary directions, they will cut through the domain. By carrying out a
limiting process in their work on body-force loading, Zhang et al. (1996b) resolved this problem and ob-

tained a series of extra line integrals over the intervals along the negative f1-axis where it cuts the domain,

such as ðl0; l1Þ, ðl2; l3Þ, from the source point on the internal surface of the region. These extra line integrals

along the negative f1-axis serve to restore the analyticity of the surface integrals by cancelling out the terms

arising from the discontinuity of logðzÞ along that axis. The same limiting process may be followed to

obtain the extra line integrals for thermal loading. Also, this can be done by summing up the surface in-

tegrals along the negative f1-axis for the upper and the lower domain with proper arguments, i.e., þp for

the upper domain and �p for the lower domain. In the general case, if the negative f1-axis cuts through the
region m times in the intervals ðl2m�1; l2m�2Þ; ðl2m�3; l2m�3Þ; . . . ; ðl1; l0Þ, the complete boundary integral

equation for plane anisotropic thermoelasticity with an internal arbitrary volume heat source can be shown

to be as follows,
CijuiðPÞ þ
Z
S
uiðQÞTijðP ;QÞdS ¼

Z
S
tiðQÞUijðP ;QÞdS þ

Z
S
ciknkUijðP ;QÞHdS �

Z
ŜS
ciknkUijðP ;QÞHdbSS

þ
X1
n¼0

Z
ŜS

bHHnV
ðnÞ
j;t ðP ;QÞ

�
� V ðnÞ

j ðP ;QÞ bHHn;t

�
n̂nt dbSS

þ
X1
n¼0

Xm
k¼1

Z l2k�2

l2k�1

LðnÞ
j ðf1Þdf1 ð39Þ
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where the integrand, LðnÞ
j ðf1Þ, for the extra line integrals is !
LðnÞ
j ðf1Þ ¼ �4pH

k12
k11

ci1 þ
ffiffiffiffi
D

p

k11
ci2 Imfri1Aj1 þ ri2Aj2g þ 4pð2nþ 1Þ bHHnG

ðnÞ
1 f2n1 cik

� K12

K11

Im
ri1Aj1l11lk1

ðl2
11 þ l2

21Þ
nþ1

( 
þ

ri2Aj2l12lk2

ðl2
12 þ l2

22Þ
nþ1

)
þ

ffiffiffiffi
D

p

k11
Im

ri1Aj1l21lk1

ðl2
11 þ l2

21Þ
nþ1

(
þ

ri2Aj2l22lk2

ðl2
12 þ l2

22Þ
nþ1

)!

� 4pGðnÞ
1 f2nþ1

1 cik bHH ;1

k12
k11

 
þ bHH;2

ffiffiffiffi
D

p

k11

!
Im

ri1Aj1lk1

ðl2
11 þ l2

21Þ
nþ1

(
þ

ri2Aj2lk2

ðl2
12 þ l2

22Þ
nþ1

)
ð40Þ
In Eq. (40), Imf�g is the operator that takes the imaginary part of the complex quantities in the parentheses.
In what follows, the veracity as well as the applicability of the derived formulations will be illustrated by

three numerical examples.
5. Numerical examples

In this section, three test examples are investigated that involve thermal loading of an internal volume

hear source presented in a fully anisotropic, elastic medium. The proposed approach to treat the volume
integral arising from the thermal loading of an internal arbitrary volume heat source has been implemented

into an existing BEM computer code based on the quadratic isoparametric element formulation. Simply for

the purpose of verification of the derived formulae by means of direct evaluation of the domain integral, the

first problem analyzed is assumed to have a trigonometric temperature distribution that corresponds to a

specific volume heat source function. The associated volume integral is evaluated by the present ETM

approach and also by the direct domain integration method (DIM) using the commercial software

MATHCAD for a comparison of integration results. The second is a square plate with a central hole

subjected to an unknown temperature distribution corresponding to a field problem under prescribed
boundary conditions, while the third is a thin square plate, partially loaded with an internal square volume

heat source. Albeit fictitious, the distribution functions of the heat generation rate for these examples are

principally to demonstrate the mathematical soundness as well as the generality of the proposed scheme.

For a random distribution of the heat generation rate in real engineering practice, it may involve the

multiple regression analysis to determine an appropriate heat source function for each different problem.

For the present analyses, eight terms (n ¼ 0–7) of the infinite series are employed, which are quite enough

for most continuous heat source functions.

The first example is designed basically for demonstration of the validity of the derived formulae, while
the others are to show the generality as well as the applicability of the proposed scheme. Using the usual

notations but with asterisks denoting values in the directions of the principal axes, the material properties

for the first problem are arbitrarily chosen to have the following values,

In the other two examples, the material properties are chosen to correspond to a glass-epoxy to show the

applicability of this technique for practical materials and they are

E�
11=E

�
22 m�12 G�

12=E
�
22 g�12;1 g�12;2 a�11=a

�
22 K11=K12 K22=K12

36/18 0.32 8.2/18 0 0 2.3/4.0 4/5 25/5

E�
11=E

�
22 m�12 G�

12=E
�
22 g�12;1 g�12;2 a�11=a

�
22 K�

11=K
�
22

55/21 0.25 9.7/21 0 0 6.3/20.0 3.46/0.35



6602 Y.C. Shiah, Y.J. Lin / International Journal of Solids and Structures 40 (2003) 6593–6612
The second example is to consider a doubly connected region and the last one deals with a thin square

plate partially loaded with an internal heat source. Both problems demand the extra line integrals to restore

the validity of the volume-to-surface integral transformation, while the last one further involves the con-

ventional sub-regioning technique. For verifications of the obtained results, the last two problems are also
solved by ANSYS6.0, commercial software based on the finite element method.
5.1. Example 1

As shown in Fig. 2, consider a thin square plate with dimensions W � W (W ¼ 2) that is subjected to a

distribution of temperature change H ¼ x21 sin x2. For the purpose of verifying the developed formulae,

suppose the heat source function bears the form,
Hðx1; x2Þ ¼ ð25x21 � 8Þ sin x2 � 20x1 cos x2 ð41Þ
which satisfies the governing heat conduction equation with the assumed conductivity coefficients. The

material principal axes are arbitrarily taken to be oriented 30� counterclockwise with respect to the global
Cartesian axes to account for full anisotropy as shown in Fig. 2. Also, Fig. 2 shows the boundary element

mesh used where there are 16 quadratic isoparametric elements with a total of 32 nodes to model the

boundary.

The volume integral associated with the thermal loading is evaluated by the boundary integrals in

Eq. (39) and also by the direct domain integration performed using commercial software MATHCAD6.0

for comparison. The results, normalized by the largest distance between any two nodes in the mesh,
ffiffiffi
2

p
W ,

are shown in Table 1 for comparison. As can be seen from the comparison of both results in the table, the

excellent agreement between both results verifies the veracity of the series of boundary integrals and the
recurrence formulae derived for the volume-to-surface integral transformation.
x1 

x2 

W=2 

W=2 

1 2 3 4 5 6 7 8 9 

10 

11 

12 

13 

14 

15 

16 

17 
18 19 20 21 22 23 24 

25 

26 

27 

28 

29 

30 

31 

32 

300 

E
*

11 
E

*

22 

Fig. 2. Boundary element mesh for Problem 1.



Table 1

Numerical values of the normalized volume integral, VIj=
ffiffiffi
2

p
W ––Problem 1

Node VI1=W
ffiffiffi
2

p
VI2=W

ffiffiffi
2

p

ETM DIM ETM DIM

1 0.15221E)05 0.15221E)05 )0.11600E)05 )0.11603E)05
2 0.14129E)05 0.14104E)05 )0.04196E)05 )0.04191E)05
3 0.13349E)05 0.13313E)05 )0.05639E)05 )0.05636E)05
4 0.12993E)05 0.12948E)05 )0.06972E)05 )0.06968E)05
5 0.13153E)05 0.13109E)05 )0.08026E)05 )0.08015E)05
6 0.13889E)05 0.13858E)05 )0.08552E)05 )0.08528E)05
7 0.15194E)05 0.15187E)05 )0.08213E)05 )0.08162E)05
8 0.16945E)05 0.16950E)05 )0.06553E)05 )0.06479E)05
9 0.18754E)05 0.18734E)05 )0.02995E)05 )0.02985E)05
10 0.13191E)05 0.13167E)05 )0.04778E)05 )0.04777E)05
11 0.07299E)05 0.07264E)05 )0.05603E)05 )0.05588E)05
12 0.02009E)05 0.01947E)05 )0.05650E)05 )0.05634E)05
13 )0.02031E)05 )0.02091E)05 )0.05128E)05 )0.05126E)05
14 )0.04220E)05 )0.04306E)05 )0.04323E)05 )0.04296E)05
15 )0.04206E)05 )0.04276E)05 )0.03425E)05 )0.03383E)05
16 )0.01631E)05 )0.01719E)05 )0.02654E)05 )0.02621E)05
17 0.02573E)05 0.02677E)05 )0.00491E)05 )0.00601E)05
18 0.02938E)05 0.03051E)05 0.01185E)05 0.01094E)05
19 0.03473E)05 0.03878E)05 0.14931E)05 0.14546E)05
20 0.04281E)05 0.04390E)05 0.02881E)05 0.02823E)05
21 0.06312E)05 0.06404E)05 0.04538E)05 0.04507E)05
22 0.08769E)05 0.08848E)05 0.06074E)05 0.06065E)05
23 0.11455E)05 0.11517E)05 0.07423E)05 0.07426E)05
24 0.14183E)05 0.14233E)05 0.08538E)05 0.08552E)05
25 0.16794E)05 0.16794E)05 0.09432E)05 0.09431E)05
26 0.13723E)05 0.13722E)05 0.07820E)05 0.07820E)05
27 0.11296E)05 0.11295E)05 0.05857E)05 0.05857E)05
28 0.09765E)05 0.09764E)05 0.03759E)05 0.03759E)05
29 0.09214E)05 0.09213E)05 0.01737E)05 0.01736E)05
30 0.09618E)05 0.09618E)05 )0.00029E)05 )0.00031E)05
31 0.10869E)05 0.10869E)05 )0.01407E)06 )0.01408E)05
32 0.12801E)05 0.12801E)05 )0.02316E)05 )0.02317E)05
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5.2. Example 2

The preceding example has been chosen such that the mathematical soundness of the developed for-

mulations can be readily verified using the direct domain integration performed by MATHCAD. As a more

complicated example to demonstrate the involvement of the extra line integrals for a multiply connected
region, the second problem, as schematically depicted in Fig. 3, is to consider a thin square plate with a

central hole subjected to the thermal loading due to a volume heat generation rate described by
Hðx1; x2Þ=K�
22 ¼ 285:71429 coshð0:41023x1Þ expðx2 � 0:50202x1Þ ð42Þ
which is arbitrarily chosen to demonstrate the generality of the developed formulations in accounting for an

arbitrary heat generation rate. Fig. 3 also shows the contours of such a distribution with darker regions

illustrating higher heat generation rates. Unlike the first problem with an assumed temperature function,

the plate reaches a steady-state temperature field with the thermal boundary conditions prescribed as
follows. Two opposite sides, AB and CD, of the plate have a temperature change H ¼ 100�, while the inner



Fig. 3. A thin anisotropic plate with a hole subjected to a non-uniform volume heat generation rate.
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surface of the hole is maintained at its original temperature (H ¼ 0�); the other two surfaces, AD and BC,

are thermally insulted. All geometrical dimensions are shown in Fig. 3. With reference to this figure, sides

AB and CD are restrained from displacement in the x2-direction, while the other two surfaces BC and

AD are free to move in any direction. To prevent rigid body motion, point A is also restrained in the x1-
direction. Also, as schematically depicted in Fig. 3, the principal axes of both material and thermal
properties are arbitrarily chosen to be oriented 30� counterclockwise with respect to the global Cartesian

axes to account for full anisotropy.
Fig. 4. BEM mesh of domain treated as a multiply connected region––Example 2.
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As shown in Fig. 4, a total of 56 quadratic isoparametric elements with 112 nodes are applied to model

the domain. As is usual for analyzing any statically coupled thermoelastic problem, the associated aniso-

tropic temperature field problem is first solved for the distribution of temperature and its gradients at

all boundary nodes. This is carried out using the MRM (Nowak and Brebbia, 1989) in conjunction with
the direct domain mapping technique (Shiah and Tan, 1997). Instead of applying the conventional sub-

regioning technique to resolve the analytical issue of the logarithmic function log zi as aforementioned, the

boundary integral equation with the extra line integrals, given by Eq. (39), is employed to demonstrate

the veracity of the developed formulations. Any field values, such as the temperature and its gradients, at

interior points required by the extra line integrals is computed in the BEM code for solving the associated

anisotropic field problem. In ANSYS, the domain is discretized into 2048 PLANE77 elements, for each of

which a constant heat source with the strength corresponding to the given heat generation function at its

center is prescribed to simulate the continuous distribution of the heat generation rate. Fig. 5 shows the
domain modeling by ANSYS. Computations of the normalized stresses, r11=E�

11a
�
11H0 and r22=E�

11a
�
11H0,

along AB and CD are carried out by both schemes and the obtained results are shown in Figs. 6 and 7,

respectively. The variations of the computed normalized stresses, r22=E�
11a

�
11H0, along BC and AD are

plotted in Fig. 8. Also, the normalized hoop stresses are calculated along the circumference of the inside

hole and plotted in Fig. 9 for both results obtained by BEM and FEM. It can be obviously seen that to our

satisfactions, the BEM results obtained by the developed formulations indeed agree with those obtained by

FEM very well.
5.3. Example 3

To demonstrate the applicability of the developed formulations for a somewhat more complicated

problem that involves both the extra line integrals and the sub-regioning technique, the third example
treated is a thin square plate partially loaded with an internal square volume heat source at its center

as shown in Fig. 10. Also, all geometrical dimensions are shown in this figure. For thermal boundary

conditions, two opposite sides EF and GH are prescribed with a temperature change H ¼ 0� and
Fig. 5. FEM meshes by ANSYS to model the domain for Problem 2.
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100�, respectively, while the other two surfaces are thermally insulated. For mechanical boundary
conditions, the top and bottom surfaces are restrained from displacement in the x2-direction like the

preceding example, while the other two sides are free to move in any direction. Also, point E is

restrained in the x1-direction to prevent rigid body motion. To demonstrate the generality as well as

the mathematical soundness of the proposed scheme for dealing with an arbitrary non-uniform vol-

ume heat source, the heat generation rate of the volume heat source is arbitrarily chosen to have a

distribution described by
Hðx1; x2Þ=K�
22 ¼ ð153:28571� 32:21429x21Þ sinðx2Þ þ 153:90571x1 cosðx2Þ ð43Þ
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where both x1 and x2 are bounded by x1; x2 2 ½0:7; 1:3�. For visualization of the distribution of the heat

generation rate, the distribution contours are also plotted in Fig. 10 with darker regions showing higher

heat generation rates. By the conventional BEM sub-regioning technique to treat the region with and

without a volume heat source as a separate sub-domain, a total of 72 quadratic isoparametric elements with
144 nodes are applied to model the boundaries of both sub-regions as shown in Fig. 11. In a similar manner



Fig. 10. A thin anisotropic plate subjected to an internal square volume heat source.

Sub-domain 1 

Sub-domain 2 

Fig. 11. Boundary element meshes to model the domain for Problem 3.
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as the preceding example, the extra line integrals are involved to deal with the thermal loading for the

outside domain, while the other sub-domain with an internal volume heat source is treated using the series

of transformed boundary integrals (n ¼ 7), yet without the involvement of the extra line integrals. Again,

the problem is first solved for the associated temperature field and its spatial gradients at all nodes including



Fig. 12. FEM meshes by ANSYS to model the domain for Problem 3.
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the boundary ones as well as those interior ones required by the extra line integrals. Then, by the BEM sub-

regioning technique with the same mesh discretisation, the boundary integral equation, Eq. (39), is solved

for the thermal stresses at all boundary nodes. As shown in Fig. 12, a total of 1936 PLANE77 elements are

used in ANSYS to model the domain. The normalized stresses, r11=E�
11a

�
11H0 and r22=E�

11a
�
11H0, along EF

and GH are calculated and plotted respectively in Figs. 13 and 14 for both results obtained by BEM and
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11H0 (H0 ¼ 100�), along EF and GH for Problem 3.
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FEM; the variations of the normalized stresses, r22=E�
11a

�
11H0, along FG and EH are plotted in Fig. 15.

Again, the excellent agreement between both results obtained by BEM and FEM shows the veracity of the

developed formulations.
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6. Conclusions

In the boundary element method for elastostatics, thermal effects are well known to manifest themselves

as additional volume integrals in the direct formulations of the boundary integral equation. The success of
applying the exact transformation method to treat the 2D thermoelasticity is not achieved until very re-

cently. In this paper, the work to treat the problem of 2D anisotropic thermoelasticity is further extended

by MRM to consider the effect of an internal non-uniform volume heat source with an arbitrary heat

generation rate. By successively applying the exact transformation method to consider the effect of an

internal arbitrary volume heat source, the volume integral arising from the thermal loading is transformed

into an infinite series of boundary ones with higher-order fundamental functions given by recursive for-

mulations. Due to the nature of fast convergence of the developed recursive formulations, the infinite series

will, in general, converge rapidly with at most seven loops for an arbitrary continuous heat source function.
Three numerical examples are given to demonstrate the veracity as well as the generality of the developed

formulations.
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