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Abstract

In the direct boundary element method (BEM) formulation of anisotropic thermoelasticity, thermal loads manifest
themselves as additional volume integral terms in the boundary integral equation (BIE). Conventionally, this requires
internal cell discretisation throughout the whole domain. In this paper, the multiple reciprocity method in BEM
analysis is employed to treat the general 2D thermoelasticity problem when the thermal loading is due to an internal
non-uniform volume heat source. By successively performing the ‘“volume-to-surface” integral transformation, the
general formulation of the associated BIE for the problem is derived. The successful implementation of such a scheme is
illustrated by three numerical examples.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Materials with anisotropic properties are increasingly being used in engineering applications and much
attention has been paid to the stress analysis of such materials. In a number of thermoelasticity problems in
engineering, internal volume heat sources with non-uniform heat generation rates may be present in the
anisotropic media due to, for example, internal chemical reactions or electrical heating. Although some
analytical solutions have been obtained for a few specific problems (see e.g., Sherief and Magahed, 1999;
Dhaliwal and Sherief, 1980), recourse to numerical methods is generally necessary for most problems in
practice.

Among the general numerical methods for engineering analysis, the boundary element method (BEM)
has been recognized as an efficient computational tool. This is due to its distinctive feature of requiring only
the numerical discretisation of the boundary of the solution domain. In the direct BEM formulation for
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elastostatics, however, body-force and thermal elastic effects are well known to manifest themselves as
additional volume integral terms. The direct means of treating these integrals will require internal cell
discretisation throughout the whole domain. Such a direct evaluation by volume discretisation would,
however, destroy the notion of BEM as the boundary solution technique. Several schemes have been
proposed over the years to resolve this “volume integral problem” in the BEM analysis of isotropic, elastic
bodies when inertia and thermal effects are considered. The simplest way of computing the domain integral
is by subdividing the region into a series of internal cells, on each of which the Gauss quadrature scheme is
applied. Alternatively, Gipson and Camp (1985) and Camp and Gipson (1992) employed an integration
scheme based on the Monte Carlo method whereby a system of random integration points rather than a
regular integration grid is used. Another way to avoid computing the domain integral is to apply particular
solutions (see, e.g., Lachat, 1975; Deb and Banerjee, 1990) by changing the variables in such a manner that
the domain integral disappears from the boundary integral equation (BIE). The dual reciprocity method,
proposed by Nardini and Brebbia (1982), has also been widely applied to deal with volume integrals.
Perhaps the most analytically elegant approach is the exact transformation method (ETM) (see, e.g., Rizzo
and Shippy, 1977; Tan, 1983; and Danson, 1983), sometimes referred to as the Galerkin vector approach, in
which the “volume integral” is transformed exactly into a series of boundary ones. Generalizing the
Galerkin vector approach with a set of higher-order fundamental solutions, the multiple reciprocity method
(MRM) was introduced by Nowak (1989) for the transient heat conduction problem and later extended to a
series of other applications by Nowak and Brebbia (1989). Among the schemes mentioned above, the ETM
and MRM are fundamentally most appealing because they restore the BEM analysis as a purely boundary
solution technique yet without requiring further numerical approximations.

Although the ETM has been widely employed to treat the volume integrals associated with body-force
and thermal effects in isotropic elasticity, similar transformations for anisotropic elasticity have not been
successfully achieved until very recently. The works of Zhang et al. (1996a,b, 1997) were the first reported
successful attempts to consider the inertia effect. The effect of a temperature change in the elastic body can,
in essence, be treated as an effective body-force over the solution domain in Navier’s equations of equi-
librium. Notwithstanding this, the extension of the ETM to handle these effects in an anisotropic medium is
not as straightforward as in isotropic elasticity. This is because, unlike the potential function for body-
force, the distribution of a temperature change in an anisotropic body, in the general case, does not satisfy
the standard Poisson’s equation. The difficulties arising from this were not overcome until very recently
when Shiah and Tan (1999a) transformed the ““volume integral”, in the analytically exact sense, into a series
of boundary ones. By removing the singularity at the source point for interior stress calculations, Shiah and
Tan (1999b) also derived the Somigliana’s identity of the interior strain for 2D anisotropic thermoelasticity.
Although the particular integral approach has been employed by Deb et al. (1991) to treat 2D anisotropic
thermoelasticity, the technique involves sub-dividing a domain into “volume cells”’. In each of these cells,
the temperature field is approximated by a suitable polynomial function through a multiple regression
analysis. In order to obtain satisfactory results, the particular integrals need to be judiciously chosen.

In this article, the MRM is applied to treat 2D anisotropic thermoelasticity under steady state conditions
when the volume heat source is within the domain. The recurrence formulae employing a set of higher-
order anisotropic fundamental solutions are derived to treat the volume integral arising from the thermal
loading of an internal arbitrary volume heat source in the anisotropic medium. The heat generation rate of
the volume heat source can be of any form of a continuous function. However, the formulations presented
would not be applicable to domains with the presence of discrete point heat sources. This is mainly due to
the singularity of temperature field near the heat sources that invalidates the analytical transformation for
the volume integral. To consider discrete point heat sources is outside the scope of the present study and
still remains at work in progress. In general, for a random distribution of heat generation rate, a continuous
function to represent the distribution needs to be chosen through the multiple regression analysis. This is
not within the scope of the present study. By applying the principal of MRM, the process to successively



Y.C. Shiah, Y.J. Lin | International Journal of Solids and Structures 40 (2003) 65936612 6595

convert the volume integral associated with the thermal loading follows the same vein as the procedures
described in the work by Shiah and Tan (1999a). This scheme has been successfully implemented into BEM
codes based on the quadratic isoparametric element formulation used in 2D anisotropic thermoelasticity. A
brief review of the procedure to treat the associated 2D anisotropic field problem in BEM is presented next.
This is followed by the formulation of the exact transformation process using the MRM. The successful
implementation of the proposed scheme is then illustrated by three numerical examples.

2. 2D anisotropic heat conduction

As a pre-process to deal with the problem of coupled anisotropic thermoelasticity, the corresponding
anisotropic heat conduction problem must first be solved to determine the distribution of the temperature
and its spatial gradients. With an internal volume heat source, the governing partial differential equation
for the 2D anisotropic heat conduction problem may be expressed as

Kij@aij +H(X7J’) =0 (1)

where @ represents a temperature change, the function H(x,y) denotes the known function for the dis-
tribution of internal heat generation rate; K;; are the thermal conductivity coefficients which, from thermo-
dynamic principals and Onsagar’s reciprocity relation, have the following relationships,

Kii >0, K»n>0, KnKn-—Kj>0, Kpj=Ky, (2)

In the case of orthotropy, where the cross-derivative term in Eq. (1) is absent, the analysis can be con-
siderably simplified. As a result, the conventional way to numerically treat the fully anisotropic problem has
been to determine the principal axes by rotation of the original Cartesian coordinates so that this term
disappears. By employing the method of characteristics to transform the governing equation into the
standard Laplace’s form, Shiah and Tan (1997) successfully solved the anisotropic heat conduction problem
using the isotropic boundary integral equation. The linear transformation between both coordinate systems
may be generally expressed as

(%1 %) =FE)x x], [bq ol =F' &) %] 3)

where [F(K;;)] (or [F~'(Kj;;)]), the transformation (or the inverse transformation) matrix in terms of the
invariant coefficients, has its component element [F,,,(K;;)] (or [F, !(K;;)]). The linear transformation allows
the analysis to be carried out using any standard BEM codes for the isotropic potential theory, albeit on a
distorted domain in the mapped plane. As is presented in detail by Shiah and Tan (1997), the mapping takes

the following form,

VA/K: 0) -1 (K”/\/Z 0) 2
F— . Fl= . A=KnKpn —K 4
(—Klz/Kn 1 Ki/vVA4 1 e 12 @

Through the transformation described above, the anisotropic field involving an internal volume heat source
is now governed by

0.;= —H<Fﬁlf‘1 + Fp ', By +F2215€2)K11/A = H (%1, %) (5)
which is the standard Poisson’s equation in the mapped plane. The associated anisotropic field problem

may now be solved by MRM (Nowak and Brebbia, 1989) in conjunction with the direct domain mapping
technique (Shiah and Tan, 1997).
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3. 2D anisotropic thermoelastic BIE

For a brief review of the basic boundary integral equation for 2D anisotropic thermoelasticity, consider
the direct formulation of the BEM for an anisotropic solid in two-dimensions, where the displacements, u;,
and the tractions, ¢, on the boundary S of the domain Q, are related by

CoulP)+ [ w(OT(P.0)ds = [ (@)U, (P.0)dS + [ X(g)Uy(P.q)d0 (©)
s s Q
in which Q and ¢ represent the field points on S and in €, respectively, and P represents the source point on
S. In Eq. (6), C; are the coeflicients associated with boundary geometry at the source point P. Also in
Eq. (6), X; represents the equivalent body-force term due to the temperature change in the domain, and
U;;(P,q) is the displacement fundamental solution, given by

U;(P,q) = 2Re{ryd; 1 logz, +rpdplogz} (7)

Also, T;;(P, Q) is the corresponding traction fundamental solution, which is well established in BEM lite-
rature (see e.g., Tan et al., 1992). In Eq. (7), r; and A; are material constants, expressed by complex
quantities, Re{-} is the operator which takes the real part of these quantities, and z; is a generalized complex
variable defined in terms of the characteristic roots, ;, and the difference of coordinates between the field
point O(x;,x;) and the load or source point P(x,,x,,) as follows

zi = (x1 = xp) + (2 —x2) = & + 1y (8)
In Eq. (8), {; represent the local coordinates which have the origin located at the source point. If the
temperature change of the elastic body is @, the equivalent body-force X; can then be written as X; = —7,,0

where y,; are the coefficients given by y,; = ciuiou, ciju being the material stiffness matrix and oy, being the
coefficients of thermal expansion. Substituting this and the additional thermal traction term into Eq. (6),
the complete integral equation considering thermal effects can now be expressed as

Cous(P) + / u(0)T(P.0)dS = / 1(0)U,(P,0)dS + / 1 ®U, (P, 0)ds — / 140Uy (P, q) 42
)

As can be seen, the last term on the right-hand-side of Eq. (9) is a volume integral arising from the thermal
loading. To restore the notion of the BEM as a computational boundary solution technique, the volume
integral (VI) needs to be transformed into boundary ones.

4. Exact VI transformation by MRM
With the heat conduction equation now defined in the %;-coordinate system and in the form of Eq. (5),
the volume integral transformation of the term due to the thermal loading in Eq. (9) can be performed

following the same procedures by Shiah and Tan (1999a). Only the main steps will be described here as the
details have been presented in this reference. Recall that the VI term is

VI, = _/Vik@‘kljijdg (10)
Q
By expressing O in the X;-coordinate system using the chain rule, Eq. (10) may be rewritten as

VI, = _/Vik@‘/jl]ijdﬁ (11)
R
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where the invariant coefficients y;; take the element of the matrix

. —71Ki2 + 7K
e
S VA
Ve = —72Ki2 + 7K (12)
Va1 Y,
Applying Green’s first theorem to this integral results in
It is convenient now to introduce a new function Qi such that
Qljk 1t — ljk (14)
Recall Green’s second identity,
[@90 - o910t = [ (490 - ¢Vg) id3 (1)
o) K

where 7 denotes the unit outward normal at the boundary S. By substituting @ for ¢ and (y&Q,;,k) for ¢, this
identity can be rewritten as -

/(V&Qijk,t_tg - “@Qijk@.z_t) do = /(?@Qiﬂq@ - ViQijk@‘g)”gd/S\ (16)
o) - - 5 - -
Substituting Eq. (5) into Eq. (16) results in
/(injkﬂ@)dﬁ = /(inﬂq@—’@Qu‘k@,g)ngd§+/(V, H,)dQ (17)
ik ik uk g L

where V is used, for brevity, to represent the term Vi Qs and H 1 1s the heat source function satisfying the
assoc1ated heat conduction equation. To facilitate the volume integral transformation, a new function V
is introduced such that it satisfies

2771 _ 1(0)
v =, (18)
Substituting Vj(l) for ¢, and H, for ¢, Green’s identity, Eq. (15), can be rewritten as

BV da = / (Er1 vy - V.<1>ﬁ11,£)ﬁ,d’s‘+ / v\ H,dQ (19)
Q - N Q -

I

~

where ﬁz stands for
H,=H,, (20)

In a similar manner, the transformation process may be successively performed to yield an infinite series as
follows,

[ [ (o s

m=1

where H,,,Ais to denote the function taking (m — 1) times of Laplace’s operation upon the heat source
function A, in the mapped plane; Vj(m> is defined to satisfy the following recursive relation,

m m—1
sz[( ) V[( ) (22)
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Therefore, from Egs. (17) and (21), one may rewrite Eq. (13) in a form of boundary integrals as follows,
VI, = _/(MUU@)”EC@—F/(%ank;@ 7 Qi@ 1) n,dS +Z/ HmVj, - »m m,)n,dS (23)
s J

For evaluating the boundary integrals in the infinite series, the task remains to determine the general ex-
plicit form of Vj('") as well as Vj(;") in a similar manner as was done by Shiah and Tan (1999a). For
this purpose, it is worth examining how the generalized complex variable z(1) may be expressed in terms of
the parameters in the x;-coordinate system. The general form of Eq. (8) may be rewritten as

zi = (%) — Xp) (24)
where pi; represents elements of the matrix
11
= 25
K (ﬂl .“2) (25)
By expressing the generalized complex variable in the X;-coordinate system, Eq. (24) may be rewritten as
z = (%) — %) (26)

where, using Egs. (3) and (4), it can be easily shown that y; is given by
<K11 + K K+ M2K12>
.u/z

v VA

I8 125
Differentiating Uy with respect to the field point Q in the x;-coordinate system yields
Ugl_c = 2Re{r,-1Aj1,uﬂ/zl + VizAjzug/Zg} (28)
From Egs. (14) and (28), the function Qy is found to be

(29)

Q B ZRe{ r,-lAjl,uﬁzl IOg(Zl) I"izAjz‘uQZz IOg(Zg) }
ik =

(1, +13,) (13, + 13,)

From direct differentiation, its spatial derivative that appears in Eq. (23) can be readily determined to be

rad it iz 10g(z1)  rdp iy nza 10g(22)
Oijr, = 2Re ] ) n 2 ] ) - 2 (30)
= (1) + 1) (15, + 143,)
From the definition Vj(o) = 7Ok, one may readily obtain
rid iz log(z rnd p i,z log(z
Vi(0> = 2y4Re : jll;ﬂ - 2g( D, JZlJQ - 2g( 2 (31)
- - (ﬂu + ﬂg) (.“g + P‘g)
Eq. (18) implies that the explicit form of Vj(l) is expressed as
rllAjlluk] rlZAﬂ,ukz
v =29, Red — AL [Flz log(z)) + B>z ] s [F3 3log(z) + Fiz: } (32)
: « { (1 +15,) 1 (13, + 13,) “2 2

where F}—F} are invariant coefficients to be determined from Eq. (18). Following the same procedure as in
Zhang et al. (1996a,b, 1997) to determine the coefficients, one may obtain

1 =5 1 -5

=—5—— h=rF5—>5 bh=/—5—>5, b= 75—">5=
36(ui; + 131) 36(ui; + 143,)

33
6(ui, + 13)) 6(uiy + 143,) (33)
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By repeating the same procedure successively to determine the fundamental solution of a higher-order form
for V;, one may obtain the general form of V; in the nth order as

1A
V/ — 2/the{ Lﬂn#—l |:G 2n+1 log(zl) + G 2n+1i|
B (ﬂll + ,“21)
rpdp iy, { (n) 1 (n) 1
PR G20 og(z,) + GY z%”} . (n=0,1,...,00) (34)
(5, + gy T ERITOE

where the coefficients GE") and Gg”) are given by the following recurrence formulae,

G+ _ G (nt1) _ Gy’ _ G"(4n +5) Gl
! 4n2 +10n+6’ 2 4n? +10n 4+ 6 (4n2 + 10n-|_6)2

(n=0,1,...,00) (35)

=1, G =0,

Differentiation of Vj(") yields

ri A
y = 2y,-kRe{ TR 4 )G og(z) + (G + 206G + G|
- N (ﬂu + ﬂ21) -
Findjp Uy n) 2 n n D\ 2
——— [(zn +1)G"2" og(z,) + (G + 2nGY + GY)23 “} } (36)
(ﬂg + .“2)

which appears in Eq. (23). In the presence of an internal arbitrary volume heat source, the complete
boundary integral equation for 2D anisotropic thermoelasticity can now be rewritten as

Cyus(P) + / ()T, (P,0)dS = / 1(0)U, (P, 0)ds + / 2 Uy (P, 0)OdS — / 1unUy (P, 0)0dS

+ [ [1:0uP. 00 1,042 00 [0 a5+ Y [ (R1(P.0

m=1

—v"(P,0) m,)n,dS (37)

In Eq. (37), by incorporating the integral terms containing Q;;, and Q,; into the infinite series, the above
equation can be further abbreviated into a simpler form, o

Cyu(P) + / u(O)T(P.0)dS = / H(0)U,(P.0)dS + / yamUy (P, 0)O dS — / 1anUy(P, )0 d3

+i/g(fln@f§’)(ﬂ 0) - ¥,"(P,0) m)ntdS (38)

in which H, (when n = 0) is defined by H, = 0. To determine H directly from its definition, one needs to
successively perform Laplace’s operation upon the heat source function H,, which should be explicitly
known for a specific distribution. Inspecting the recurrence formulae in Eq. (35), one may observe that the
factor (4n*> + 10n + 6) appears in the denominators of the coefficients and hence guarantees rapid con-
vergence of the infinite series. In general, the infinite series have been tested to converge to a finite value for
most heat source functions when # is set no more than 7. When the heat source function reveals strong
divergence for H,, properly re-scaling of the domain dimensions may be necessary to ensure rapid con-
vergence of the infinite series. For this re-scaling process, all nodal coordinates may be divided by the
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Fig. 1. A multiply connected domain.

maximum length between any two arbitrary nodes such that H, is convergent for taking n — 1 times of
Laplace’s operations upon the heat source function. With all functions determined, solving Eq. (38) pre-
sents no serious difficulties since all integrands are at most weakly singular.

There remains one more issue that needs to be addressed in the general case, however. It concerns the
terms containing log(z) in the integrands, as it may not be analytic everywhere in the domain. This issue has
been explained in detail in Zhang et al. (1996b), and Shiah and Tan (1999a); thus, it will only be briefly
discussed here. If one defines the principal value of z as —n < arg(z) < =, the quantity log(z) is not analytic
along the negative {;-axis. This will invalidate the foregoing VI transformation. Although the problem may
be avoided by argument redefinition as proposed by Zhang et al. (1996b), it is not always possible to re-
define the range of arg(z) to ensure the analyticity of log(z) everywhere in the domain. This is true for a
multiply connected domain. Take the region shown in Fig. 1, for example. If rays from any point along an
inner boundary are projected in arbitrary directions, they will cut through the domain. By carrying out a
limiting process in their work on body-force loading, Zhang et al. (1996b) resolved this problem and ob-
tained a series of extra line integrals over the intervals along the negative {;-axis where it cuts the domain,
such as (/y, /1), (I, 15), from the source point on the internal surface of the region. These extra line integrals
along the negative (;-axis serve to restore the analyticity of the surface integrals by cancelling out the terms
arising from the discontinuity of log(z) along that axis. The same limiting process may be followed to
obtain the extra line integrals for thermal loading. Also, this can be done by summing up the surface in-
tegrals along the negative {;-axis for the upper and the lower domain with proper arguments, i.e., +7 for
the upper domain and —= for the lower domain. In the general case, if the negative {;-axis cuts through the
region m times in the intervals (ls,_1, lom_2), (lam—3s lom—3),-- -, ({1,1o), the complete boundary integral
equation for plane anisotropic thermoelasticity with an internal arbitrary volume heat source can be shown
to be as follows,

Cui(P) + / u(O)Ty (P, 0)dS = / £(0)Uy (P, 0)dS + / v Uy(P, 0)OdS — / 1umiUy(P.0)0 dS

N N N N

+§: / (?M/,ff)(P, 0) - r"(P,0) A,,,z)ﬁ,dﬁ
n=0 J§ N -

o] Dk
> /1 . L (¢, (39)

m
n=0 k=1
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where the integrand, L;")(C 1), for the extra line integrals is

n k \/_j Ty n n
L; )(Cl) = —4nO (k_:m +k_11y2> Im{rid; + rpdp} +4n(2n + l)H,,GE ) ? Vik

K, rid i g roAphi e \/ZI rind ko A pyn o
X Ki m 2 2 \n+1 + 2 2 \n+l ki m 2 2 \n+l + 2 2 \n+l
11 (ﬂuJﬂ“g) (ﬂ2+1u'2) 11 (“ﬂ+#2) (.“QJFIHQ)
) 2n ~ ki o~ VA raAj roApy,
_ 47'CG§ ) ? +1"})% Hvlk_ + Hgk— Im 5 27n+1 + 5 27n+1 (40)
1 1 (,uu‘f'.“g) (NQ"’.“Q)

In Eq. (40), Im{-} is the operator that takes the imaginary part of the complex quantities in the parentheses.
In what follows, the veracity as well as the applicability of the derived formulations will be illustrated by
three numerical examples.

5. Numerical examples

In this section, three test examples are investigated that involve thermal loading of an internal volume
hear source presented in a fully anisotropic, elastic medium. The proposed approach to treat the volume
integral arising from the thermal loading of an internal arbitrary volume heat source has been implemented
into an existing BEM computer code based on the quadratic isoparametric element formulation. Simply for
the purpose of verification of the derived formulae by means of direct evaluation of the domain integral, the
first problem analyzed is assumed to have a trigonometric temperature distribution that corresponds to a
specific volume heat source function. The associated volume integral is evaluated by the present ETM
approach and also by the direct domain integration method (DIM) using the commercial software
MATHCAD for a comparison of integration results. The second is a square plate with a central hole
subjected to an unknown temperature distribution corresponding to a field problem under prescribed
boundary conditions, while the third is a thin square plate, partially loaded with an internal square volume
heat source. Albeit fictitious, the distribution functions of the heat generation rate for these examples are
principally to demonstrate the mathematical soundness as well as the generality of the proposed scheme.
For a random distribution of the heat generation rate in real engineering practice, it may involve the
multiple regression analysis to determine an appropriate heat source function for each different problem.
For the present analyses, eight terms (z = 0-7) of the infinite series are employed, which are quite enough
for most continuous heat source functions.

The first example is designed basically for demonstration of the validity of the derived formulae, while
the others are to show the generality as well as the applicability of the proposed scheme. Using the usual
notations but with asterisks denoting values in the directions of the principal axes, the material properties
for the first problem are arbitrarily chosen to have the following values,

E}/E5 Vi) G,/ E Ma ”T2,2 oy /%, K1 /Ky Kn /K
36/18 0.32 8.2/18 0 0 2.3/4.0 4/5 2515

In the other two examples, the material properties are chosen to correspond to a glass-epoxy to show the
applicability of this technique for practical materials and they are

E}/E, Vi G,/ E3 ’7’1‘2«,1 ”Tz,z oy /0, K}, /K3,
55/21 0.25 9.7/21 0 0 6.3/20.0 3.46/0.35
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The second example is to consider a doubly connected region and the last one deals with a thin square
plate partially loaded with an internal heat source. Both problems demand the extra line integrals to restore
the validity of the volume-to-surface integral transformation, while the last one further involves the con-
ventional sub-regioning technique. For verifications of the obtained results, the last two problems are also
solved by ANSYS6.0, commercial software based on the finite element method.

5.1. Example 1

As shown in Fig. 2, consider a thin square plate with dimensions W x W (W = 2) that is subjected to a
distribution of temperature change © = x?sinx,. For the purpose of verifying the developed formulae,
suppose the heat source function bears the form,

H(x1,x;) = (25xF — 8) sinx; — 20x; cosx; (41)

which satisfies the governing heat conduction equation with the assumed conductivity coefficients. The
material principal axes are arbitrarily taken to be oriented 30° counterclockwise with respect to the global
Cartesian axes to account for full anisotropy as shown in Fig. 2. Also, Fig. 2 shows the boundary element
mesh used where there are 16 quadratic isoparametric elements with a total of 32 nodes to model the
boundary.

The volume integral associated with the thermal loading is evaluated by the boundary integrals in
Eq. (39) and also by the direct domain integration performed using commercial software MATHCAD®6.0
for comparison. The results, normalized by the largest distance between any two nodes in the mesh, V27,
are shown in Table 1 for comparison. As can be seen from the comparison of both results in the table, the
excellent agreement between both results verifies the veracity of the series of boundary integrals and the
recurrence formulae derived for the volume-to-surface integral transformation.

X
A7
24 23 22 21 20 1918
17
— 54—
26 ® [ ] 16
274 &4.15
* 14
28 ¢ E, . ¢
W=2 294 E, 13
30 ¢ ¢ 12
0
cil 3 300 4n
32 ¢ ¢ 10
Y o—b o & o 1 o
® ® * g >
T T T X
1 23 4 5 6 78 9 1

Fig. 2. Boundary element mesh for Problem 1.
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Table 1
Numerical values of the normalized volume integral, VI;/ V2W—Problem 1
Node VI, /W2 VL /W2
ETM DIM ETM DIM

1 0.15221E-05 0.15221E-05 —0.11600E-05 —0.11603E-05
2 0.14129E-05 0.14104E-05 —0.04196E-05 —0.04191E-05
3 0.13349E-05 0.13313E-05 —0.05639E-05 —-0.05636E—05
4 0.12993E-05 0.12948E-05 —0.06972E-05 —0.06968E—05
5 0.13153E-05 0.13109E-05 —0.08026E-05 —0.08015E-05
6 0.13889E-05 0.13858E-05 —0.08552E-05 —0.08528E-05
7 0.15194E-05 0.15187E-05 —0.08213E-05 —0.08162E-05
8 0.16945E-05 0.16950E—-05 —0.06553E-05 —0.06479E-05
9 0.18754E-05 0.18734E-05 —0.02995E-05 —0.02985E-05
10 0.13191E-05 0.13167E-05 —0.04778E-05 —0.04777E-05
11 0.07299E-05 0.07264E-05 —0.05603E-05 —0.05588E-05
12 0.02009E-05 0.01947E-05 —0.05650E-05 —0.05634E-05
13 —0.02031E-05 —0.02091E-05 —0.05128E-05 —0.05126E-05
14 —0.04220E-05 —0.04306E-05 —0.04323E-05 —0.04296E-05
15 —0.04206E-05 —0.04276E-05 —0.03425E-05 —0.03383E-05
16 —0.01631E-05 —0.01719E-05 —0.02654E-05 —0.02621E-05
17 0.02573E-05 0.02677E-05 —0.00491E-05 —0.00601E-05
18 0.02938E-05 0.03051E-05 0.01185E-05 0.01094E-05
19 0.03473E-05 0.03878E—05 0.14931E-05 0.14546E-05
20 0.04281E-05 0.04390E-05 0.02881E-05 0.02823E-05
21 0.06312E-05 0.06404E-05 0.04538E-05 0.04507E-05
22 0.08769E-05 0.08848E-05 0.06074E-05 0.06065E-05
23 0.11455E-05 0.11517E-05 0.07423E-05 0.07426E-05
24 0.14183E-05 0.14233E-05 0.08538E-05 0.08552E-05
25 0.16794E-05 0.16794E-05 0.09432E-05 0.09431E-05
26 0.13723E-05 0.13722E-05 0.07820E-05 0.07820E-05
27 0.11296E-05 0.11295E-05 0.05857E-05 0.05857E-05
28 0.09765E-05 0.09764E—-05 0.03759E-05 0.03759E-05
29 0.09214E-05 0.09213E-05 0.01737E-05 0.01736E-05
30 0.09618E-05 0.09618E-05 —0.00029E-05 —0.00031E-05
31 0.10869E-05 0.10869E-05 —0.01407E-06 —0.01408E-05
32 0.12801E-05 0.12801E-05 —0.02316E-05 —-0.02317E-05

5.2. Example 2

The preceding example has been chosen such that the mathematical soundness of the developed for-
mulations can be readily verified using the direct domain integration performed by MATHCAD. As a more
complicated example to demonstrate the involvement of the extra line integrals for a multiply connected
region, the second problem, as schematically depicted in Fig. 3, is to consider a thin square plate with a
central hole subjected to the thermal loading due to a volume heat generation rate described by

H(x1,x2) /K, = 285.71429 cosh(0.41023x; ) exp (x> — 0.50202x,) (42)

which is arbitrarily chosen to demonstrate the generality of the developed formulations in accounting for an
arbitrary heat generation rate. Fig. 3 also shows the contours of such a distribution with darker regions
illustrating higher heat generation rates. Unlike the first problem with an assumed temperature function,
the plate reaches a steady-state temperature field with the thermal boundary conditions prescribed as
follows. Two opposite sides, AB and CD, of the plate have a temperature change ® = 100°, while the inner
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Fig. 3. A thin anisotropic plate with a hole subjected to a non-uniform volume heat generation rate.

surface of the hole is maintained at its original temperature (@ = 0°); the other two surfaces, AD and BC,
are thermally insulted. All geometrical dimensions are shown in Fig. 3. With reference to this figure, sides
AB and CD are restrained from displacement in the x,-direction, while the other two surfaces BC and
AD are free to move in any direction. To prevent rigid body motion, point A is also restrained in the x;-
direction. Also, as schematically depicted in Fig. 3, the principal axes of both material and thermal
properties are arbitrarily chosen to be oriented 30° counterclockwise with respect to the global Cartesian
axes to account for full anisotropy.

Fig. 4. BEM mesh of domain treated as a multiply connected region—Example 2.
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As shown in Fig. 4, a total of 56 quadratic isoparametric elements with 112 nodes are applied to model
the domain. As is usual for analyzing any statically coupled thermoelastic problem, the associated aniso-
tropic temperature field problem is first solved for the distribution of temperature and its gradients at
all boundary nodes. This is carried out using the MRM (Nowak and Brebbia, 1989) in conjunction with
the direct domain mapping technique (Shiah and Tan, 1997). Instead of applying the conventional sub-
regioning technique to resolve the analytical issue of the logarithmic function logz; as aforementioned, the
boundary integral equation with the extra line integrals, given by Eq. (39), is employed to demonstrate
the veracity of the developed formulations. Any field values, such as the temperature and its gradients, at
interior points required by the extra line integrals is computed in the BEM code for solving the associated
anisotropic field problem. In ANSYS, the domain is discretized into 2048 PLANE77 elements, for each of
which a constant heat source with the strength corresponding to the given heat generation function at its
center is prescribed to simulate the continuous distribution of the heat generation rate. Fig. 5 shows the
domain modeling by ANSYS. Computations of the normalized stresses, o;/E}, o}, 00 and 65 /E} 0, 0y,
along AB and CD are carried out by both schemes and the obtained results are shown in Figs. 6 and 7,
respectively. The variations of the computed normalized stresses, 2,/E},0};@0, along BC and AD are
plotted in Fig. 8. Also, the normalized hoop stresses are calculated along the circumference of the inside
hole and plotted in Fig. 9 for both results obtained by BEM and FEM. It can be obviously seen that to our
satisfactions, the BEM results obtained by the developed formulations indeed agree with those obtained by
FEM very well.

5.3. Example 3

To demonstrate the applicability of the developed formulations for a somewhat more complicated
problem that involves both the extra line integrals and the sub-regioning technique, the third example
treated is a thin square plate partially loaded with an internal square volume heat source at its center
as shown in Fig. 10. Also, all geometrical dimensions are shown in this figure. For thermal boundary
conditions, two opposite sides EF and GH are prescribed with a temperature change © = 0° and
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Fig. 5. FEM meshes by ANSYS to model the domain for Problem 2.
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100°, respectively, while the other two surfaces are thermally insulated. For mechanical boundary
conditions, the top and bottom surfaces are restrained from displacement in the x,-direction like the
preceding example, while the other two sides are free to move in any direction. Also, point E is
restrained in the x;-direction to prevent rigid body motion. To demonstrate the generality as well as
the mathematical soundness of the proposed scheme for dealing with an arbitrary non-uniform vol-
ume heat source, the heat generation rate of the volume heat source is arbitrarily chosen to have a

distribution described by
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Fig. 9. Variations of normalized hoop stresses, agy/E},o;, 0y (@9 = 100°), along the circumference of the hole for Problem 2.

where both x; and x, are bounded by x;,x, € [0.7,1.3]. For visualization of the distribution of the heat
generation rate, the distribution contours are also plotted in Fig. 10 with darker regions showing higher
heat generation rates. By the conventional BEM sub-regioning technique to treat the region with and
without a volume heat source as a separate sub-domain, a total of 72 quadratic isoparametric elements with
144 nodes are applied to model the boundaries of both sub-regions as shown in Fig. 11. In a similar manner
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Fig. 10. A thin anisotropic plate subjected to an internal square volume heat source.
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Fig. 11. Boundary element meshes to model the domain for Problem 3.

as the preceding example, the extra line integrals are involved to deal with the thermal loading for the
outside domain, while the other sub-domain with an internal volume heat source is treated using the series
of transformed boundary integrals (n = 7), yet without the involvement of the extra line integrals. Again,
the problem is first solved for the associated temperature field and its spatial gradients at all nodes including
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the boundary ones as well as those interior ones required by the extra line integrals. Then, by the BEM sub-
regioning technique with the same mesh discretisation, the boundary integral equation, Eq. (39), is solved
for the thermal stresses at all boundary nodes. As shown in Fig. 12, a total of 1936 PLANE77 elements are
used in ANSYS to model the domain. The normalized stresses, a11/E},0;, 00 and 02, /E} a}, 0y, along EF
and GH are calculated and plotted respectively in Figs. 13 and 14 for both results obtained by BEM and
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FEM; the variations of the normalized stresses, o2, /E7, 0,0y, along FG and EH are plotted in Fig. 15.
Again, the excellent agreement between both results obtained by BEM and FEM shows the veracity of the
developed formulations.
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6. Conclusions

In the boundary element method for elastostatics, thermal effects are well known to manifest themselves
as additional volume integrals in the direct formulations of the boundary integral equation. The success of
applying the exact transformation method to treat the 2D thermoelasticity is not achieved until very re-
cently. In this paper, the work to treat the problem of 2D anisotropic thermoelasticity is further extended
by MRM to consider the effect of an internal non-uniform volume heat source with an arbitrary heat
generation rate. By successively applying the exact transformation method to consider the effect of an
internal arbitrary volume heat source, the volume integral arising from the thermal loading is transformed
into an infinite series of boundary ones with higher-order fundamental functions given by recursive for-
mulations. Due to the nature of fast convergence of the developed recursive formulations, the infinite series
will, in general, converge rapidly with at most seven loops for an arbitrary continuous heat source function.
Three numerical examples are given to demonstrate the veracity as well as the generality of the developed
formulations.
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